604 research outputs found

    Leveraging smart meter data for economic optimization of residential photovoltaics under existing tariff structures and incentive schemes

    Full text link
    © 2017 Elsevier Ltd The introduction of smart grid technologies and the impending removal of incentive schemes is likely to complicate the cost-effective selection and integration of residential PV systems in the future. With the widespread integration of smart meters, consumers can leverage the high temporal resolution of energy consumption data to optimize a PV system based on their individual circumstances. In this article, such an optimization strategy is developed to enable the optimal selection of size, tilt, azimuth and retail electricity plan for a residential PV system based on hourly consumption data. Hourly solar insolation and PV array generation models are presented as the principal components of the underlying objective function. A net present value analysis of the potential monetary savings is considered and set as the optimization objective. A particle swarm optimization algorithm is utilized, modified to include a penalty function in order to handle associated constraints. The optimization problem is applied to real-world Australian consumption data to establish the economic performance and characteristics of the optimized systems. For all customers assessed, an optimized PV system producing a positive economic benefit could be found. However not all investment options were found to be desirable with at most 77.5% of customers yielding an acceptable rate of return. For the customers assessed, the mean PV system size was found to be 2 kW less than the mean size of actual systems installed in the assessed locations during 2015 and 2016. Over-sizing of systems was found to significantly reduce the potential net benefit of residential PV from an investor's perspective. The results presented in this article highlight the necessity for economic performance optimization to be routinely implemented for small-scale residential PV under current regulatory and future smart grid operating environments

    A review on protection issues in micro-grids embedded with distribution generations

    Full text link
    © 2017 IEEE. According to recent developments, the application of distributed generations (DGs) has become popular especially in distribution systems. The high utilization of distributed generating resources in modern power systems can cause new challenges from protection coordination perspectives. Changing the distribution system structure from single-supply radial system to multi-source ring network, leads to the bidirectional power flow and also has a vital impact on protection coordination issues. In addition, micro-grids can be operated under grid-connected as well as islanded mode, and fault current is extensively different for these two operation modes. Therefore, traditional protection algorithms cannot be used in the advancement of power systems. In recent years, several research studies have been conducted to investigate the improvement of protection schemes in micro-grids. This paper presents a comprehensive review on protection problems resulting from micro-grids embedded with DGs, and discusses some alternate protection strategies

    Maximizing investment value of small-scale PV in a smart grid environment

    Full text link
    © 2016 IEEE. Determining the optimal size and orientation of small-scale residential based PV arrays will become increasingly complex in the future smart grid environment with the introduction of smart meters and dynamic tariffs. However consumers can leverage the availability of smart meter data to conduct a more detailed exploration of PV investment options for their particular circumstances. In this paper, an optimization method for PV orientation and sizing is proposed whereby maximizing the PV investment value is set as the defining objective. Solar insolation and PV array models are described to form the basis of the PV array optimization strategy. A constrained particle swarm optimization algorithm is selected due to its strong performance in non-linear applications. The optimization algorithm is applied to real-world metered data to quantify the possible investment value of a PV installation under different energy retailers and tariff structures. The arrangement with the highest value is determined to enable prospective small-scale PV investors to select the most cost-effective system

    Exchange bias and interface electronic structure in Ni/Co3O4(011)

    Full text link
    A detailed study of the exchange bias effect and the interfacial electronic structure in Ni/Co3O4(011) is reported. Large exchange anisotropies are observed at low temperatures, and the exchange bias effect persists to temperatures well above the Neel temperature of bulk Co3O4, of about 40 K: to ~80 K for Ni films deposited on well ordered oxide surfaces, and ~150 K for Ni films deposited on rougher Co3O4 surfaces. Photoelectron spectroscopy measurements as a function of Ni thickness show that Co reduction and Ni oxidation occur over an extended interfacial region. We conclude that the exchange bias observed in Ni/Co3O4, and in similar ferromagnetic metallic/Co3O4 systems, is not intrinsic to Co3O4 but rather due to the formation of CoO at the interface.Comment: 8 pages, 6 figures. Accepted for publication in Physical Review B

    Negative linear compressibility in common materials

    Get PDF
    © 2015 AIP Publishing LLC. Negative linear compressibility (NLC) is still considered an exotic property, only observed in a few obscure crystals. The vast majority of materials compress axially in all directions when loaded in hydrostatic compression. However, a few materials have been observed which expand in one or two directions under hydrostatic compression. At present, the list of materials demonstrating this unusual behaviour is confined to a small number of relatively rare crystal phases, biological materials, and designed structures, and the lack of widespread availability hinders promising technological applications. Using improved representations of elastic properties, this study revisits existing databases of elastic constants and identifies several crystals missed by previous reviews. More importantly, several common materials - drawn polymers, certain types of paper and wood, and carbon fibre laminates - are found to display NLC. We show that NLC in these materials originates from the misalignment of polymers/fibres. Using a beam model, we propose that maximum NLC is obtained for misalignment of 26°. The existence of such widely available materials increases significantly the prospects for applications of NLC

    Wear of human teeth: a tribological perspective

    Get PDF
    The four main types of wear in teeth are attrition (enamel-on-enamel contact), abrasion (wear due to abrasive particles in food or toothpaste), abfraction (cracking in enamel and subsequent material loss), and erosion (chemical decomposition of the tooth). They occur as a result of a number of mechanisms including thegosis (sliding of teeth into their lateral position), bruxism (tooth grinding), mastication (chewing), toothbrushing, tooth flexure, and chemical effects. In this paper the current understanding of wear of enamel and dentine in teeth is reviewed in terms of these mechanisms and the major influencing factors are examined. In vitro tooth wear simulation and in vivo wear measurement and ranking are also discussed

    Generalized ultrasonic scattering model for arbitrary transducer configurations

    Get PDF
    Ultrasonic scattering in polycrystalline media is directly tied to microstructural features. As a result, modeling efforts of scattering from microstructure have been abundant. The inclusion of beam modeling for the ultrasonic transducers greatly simplified the ability to perform quantitative, fully calibrated experiments. In this article, a theoretical scattering model is generalized to allow for arbitrary source and receiver configurations, while accounting for beam behavior through the total propagation path. This extension elucidates the importance and potential of out-of-plane scattering modes in the context of microstructure characterization. The scattering coefficient is explicitly written for the case of statistical isotropy and ellipsoidal grain elongation, with a direct path toward expansion for increased microstructural complexity. Materials with crystallites of any symmetry can be studied with the present model; the numerical results focus on aluminum, titanium, and iron. The amplitude of the scattering response is seen to vary across materials, and to have varying sensitivity to grain elongation and orientation depending on the transducer configuration selected. The model provides a pathway to experimental characterization of microstructure with optimized sensitivity to parameters of interest
    corecore